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Abstract

Energy storage devices such as composite rotors are built with radial precompression to
enhance mechanical performance; however, the preload might decrease due to the viscoelastic
behavior of materials at elevated temperatures. In this investigation, an analytical solution is
developed to study the viscoelastic problem of thick-walled cylinders. The analysis accounts for
ply-by-ply variations of properties, fiber orientations, and temperature gradients through the
thickness of cylinders. Fiber-reinforced composite materials generally illustrate extreme
anisotropy in viscoelastic behavior. The viscoelasticity exists mainly in matrix-dominant
properties such as transverse and shear while the fiber-dominant properties behave more like
elastic mediums. Accordingly, the viscoelastic characteristics of composite cylinders are quite
different from those of isotropic cylinders. Currently, finite-element packages such as
ABAQUS, ANSYS, and DYNA3D are not suitable for the viscoelastic analysis of composite
cylinders because of the lack of anisotropic viscoelastic elements. The prestress in the
hoop-wound fibers, which generates radial compression in the cylinders, might decrease due to
Poisson's effect alone from the creep behavior in the transverse properties of composite. The
result also shows the effects of layup construction and fiber orientations on the anisotropic
behavior of composite cylinders.
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1. Introduction

Composite materials are currently used for highly efficient rotors, as an energy storage device.
For these applications, prestresses are built in during fabrication of the cylinders through a press-fit
procedure to enhance the mechanical performance. In a high-speed rotor, centrifugal force resulting
from the rotation during operation generates tensile stresses in the radial and circumferential
directions. Since the composite rotors are primarily reinforced in a circumferential direction, the
radial tensile is critical to the ultimate performance of the rotors due to the weakness of radial
strength. Accordingly, it is crucial to build and maintain a certain level of radial compression in the
rotor prior to operation. Reinforced composite materials are also used for cohstruction of lightweight
gun barrels. Composite gun tubes are generally built with a metal liner and a composite overwrap.
Because of a thick-walled construction, there is a stress gradient through the thickness of barrels as
subjected to propellant pressure. For a gun barrel application, there is a stress gradient through the
wall thickness. The stress gradient has to be minimized to achieve the optimal structural
performance. Composite gun barrels must be prestressed; therefore, the composite overwrap is in

a state of tension to induce compression in the steel liner.

- Polymer materials in general behave viscoelastically, which means that creep associated with
stress relaxation occurs in a long period of time, especially at elevated temperatures (Ferry 1961).
The associated stress relaxation in the composite wall results in loss of the prestresses and potentially
leads to structural failures or downgrade in performance. Fiber-reinforced composites with polymer
matrix carry the same characteristic, but behave more complicatedly due to anisotropy. For
carbon-fiber composite, fiber-dominant properties such as modulus in the fiber direction are sort of
elastic. The viscoelasticity exists mainly in matrix-dominant properties such as transverse moduli and
shear properties. Because of the extreme anisotropic characteristic, a composite cylinder will behave

- quite differently from one built with isotropic materials. The objective of this investigation is to
develop an analytical method to study the viscoelastic behavior of the thick-walled composite
cylinders. The analysis can be applied to the design of flywheel machinery and overwrapped
composite gun tubes.




To date, activities in the research of viscoelasticity have mainly concerned isotropic materials
included in the studies by Muki and Sternberg (1961), Schapery (1964), Williams (1964), and
Christensen (1982). These basic theories of viscoelasticity were then extended to the area of
heterogeneous and anisotropic materials for a variety of applications. Hashin (1965) used the
effective relaxation moduli and creep compliances to define the macroscopic viscoelastic behavior of
linear viscoelastic heterogeneous media and its implementation in viscoelastic modeling. The general
formulation of linear viscoelastic boundary value problems of composite materials, including the
thermal viscoelastic problems for thermorheologically simple materials and the applications of the
correspondence principle, were examined by Schapery (1967). Rogers and Lee (1964) investigated

the viscoelastic behavior of an isotropic cylinder.

In the following research, the linear quasi-static viscoelastic behavior of a thick laminated
composite cylinder with an elevated temperature change is studied. The analysis accounts for
ply-by-ply variation of properties, temperature changes, and fiber orientations. The thick cylinder is
assumned to be in the absence of thermomechanical coupling and to be in the state of generalized plane
strain, such that all the stress and strain components are independent of the axial coordinate (Tzeng
and Chien 1994). Moreover, due to the nature of axisymmetry, all the stress and strain components
are also independent of the circumferential coordinate. The mechanical responses of this thick
composite cylinder will, therefore, only have to satisfy the governing equation in the radial direction.
Invoking the Boltzmann superposition integral for the complete spectrum of increments of anisotropic
material constants with respect to time, the thermoviscoelastic constitutive relations of the anisotropic
composite cylinder can be derived in integral forms. Since the thick composite cylinder is subjected
to a constant elevated temperature change, and boundary conditions are all independent of time,
formulations of the linear thermal viscoelastic problem can have forms identical to those of the
corresponding linear thermoelastic problem by taking advantage of the elastic-viscoelastic
correspondence principle. In other words, all of these integral constitutive equations reduce to
algebraic relations that are very similar to those developed for thermoelastic media when they are
Laplace transformed by means of the rule for convolution integrals. The thermoelastic analysis can

thus be used to derive the transformed thermal viscoelastic solutions in the frequency domain.



2. Viscoelastic Formulation

Consider a filament-wound axisymmetric thick composite cylinder consisting of N layers with the
axial coordinate z, the radial coordinate r, and the circumferential coordinate 0, as shown in Figure 1.
This composite cylinder has the inner radius a, the outer radius b, and the length L. The Boltzmann
superposition integral of a stress 0;; (i, j= 1, 2, 3) and strain €; (i, j = 1, 2, 3) relation for an isothermal
viscoelastic problem with a constant temperature increase AT and the thermal expansion coefficient

o, is

de, (D)
ot

o) = fot C(T,t-1) dt - B,(T.OAT, )

where Ci'j‘l (T,t) is the relaxation modulus dependent on temperature T and time t,

C(T@®).t) = CH(T,HA )

A,t =_.._t—-,
© ap (T(®))

Here, T, is the base temperature, and a; is the temperature-shift factor. ﬁé(T,t) is given by
By(T,t) = C,j"‘(T,t) - oy, . It is often desirable to use the inverse form of the constitutive relation (1),

90,,(t)
T

€1 = fo‘ Aj'(T,t - 1) dv + Y (THAT, )

where (T,t) is the tensor product of the creep compliance Ai'j‘l (T,t) and the thermal creep
coefficient ¢,,. Since the elevated temperature change AT is constant above some reference value
in time, the relaxation moduli and creep compliances are evaluated at that reference temperature
regardless of whether or not the material is thermorheologically simple by employing the temperature-
shift factor.




Figure 1. Continuity Cylindrical Coordinate System (r, q, z) of a Laminated Cylinder
Containing N Layers.

The Laplace transform of a function f(t) is defined as
=% = f" e Sf(t)dt, 3)
0

where s is the Laplace transform variable. Applying (3) with the convolution rule to (1) and (2)

reduces the integral constitutive equations to the following algebraic relations:

_ “kl o~ ~ AT

0 = Cij € - ﬁij_s ’ )]
and the inverse form

~ ~kl - ~ AT

€;=A;0;+ wij_s ) &)

respectively, where
Skl o~k Skl o akl o~ o T N _ ~klL =~ _ Akl
Cii =sCy, Aj = sAj, &;; = 56, = s¢;;,B,, = Cjj- @, and Py = Ajj ¢,

Furthermore, it can be shown that Kfjl] = [é:‘jl]'l .



Consider a corresponding thermoelastic problem with the transformed displacement components
i, v, and % in the axial direction, the circumferential direction, and the radial direction,
respectively, in each layer. The axisymmetric character of the thick composite cylinder along with
the assumption of the state of generalized plane strain leads to a simplified displacement field, which

reflects the circumferential independence and only-radial dependence of W,

u(r,0,z) = u(r,z)
v(r,0,2) = v(r,2)
w(r,0,z) = w(r). (6)

Substituting these transformed displacement components into the strain-displacement relations
and invoking the compatibility conditions, one can derive explicit forms of T and V. Since each layer
of the thick laminated cylinder is cylindrically monoclinic in reference to the global coordinates, there
is no coupling between transverse shears and other deformations. Accordingly, the vanishing shear
traction boundary conditions and interface continuity conditions generate zero out-of-plane shear
tractions and shear strains for each layer. Moreover, owing to the absence of torsional deformation,

the transformed displacement components @ and v become

]
1
mt

@)

<!
n
o

where the constant quantity &° has the physical interpretation of transformed axial strain of a layer.
In fact, €°, according to the present formulation, also represents the transformed axial strain of the
entire composite cylinder. The calculation of &° requires the knowledge of end boundary conditions
and will be given later. Likewise, solving for W (r)requires the information of transformed strain

components, the constitutive equations, as well as the equilibrium equations.

The previously transformed displacement field gives the transformed strain components in

cylindrical coordinates




- Ww(r)

€, =

60 r

__dn _ _g

€,=—~=E

€y, =€, =€ =0. @®

The unabridged form of the constitutive equation (4) for each layer in cylindrical coordinates with
the radial coordinate r normal to the plane of symmetry is expressed as

(5 Ci €2 Cs 0 0 Cgp (e ] (B )

Ogo Cio Cn Gy 0 0 Gy Iz, ﬁu

o_.| = Cis Cu Gy 60 60 Css €| - AT ﬁee .

< aarP 0 0 0 644 645 0 4 _éet 4 s L Oﬂ‘ > (9)
o IS Al 0

o, 16 “26 “36 66) 2 | B, |

Furthermore, from the previous discussions, it can be shown that two of the three equilibrium
equations are satisfied automatically. The only nontrivial equilibrium equation is the one in the radial

direction:

al
|
Q
@
[

99, + —_ =0 (10)
or r C

Substituting (6), (7), and (8) into (9), the transformed stress components 0 _ and Oy, are
obtained in terms of the transformed radial displacement W. Incorporating the resulting

0_ and O, functions with (10) gives a nonhomogeneous Euler differential equation of W for a layer

2= ~ - ~ ~ ~ ~
el ¥ A% g - LAT @ B - @,- €, (11)
dl'2 dr C33 s



. where
2= 2,
Solving (11) for wyields
- - hry l 1

where
C, - C,

f, =
Cas - C22

S =22
S

AT[ﬁrr - ﬁea]’. |

(12)

(13)

(14)

and Al and Az are coefficients to be determined from boundary and continuity conditions.

Finally, it is understood that the initial condition of the oﬁginal thermoviscoelastic problem is

displacement-free state of rest. The boundary conditions are of free tractions and, hence, of free

transformed tractions on both inner and outer circular surfaces:

z=0,L,

(15)

(16)




where r, and r, are inner and outer radii, respectively, of the kth layer. The continuity conditions at
each interface between two adjacent layers require continuous radial traction and continuous radial

displacement at any instant as shown in Figure 2. Thus, when written in the transformed form, they
become
Opp = Oy =0 an

and

w9 = %% (18)

’

where k = 1, -, N - 1, and subscripts i and o denote inner and outer surfaces, respectively.

Accordingly, the formulation accounts for ply-by-ply variations of material properties and
temperature change. The matrix form numerical solution procedure with parallel computing
techniques resolved the complexity and time-consuming calculation procedures in a Laplace transform
of a multilayered composite cylinder (Chien and Tzeng 1995).

—1 -2
c’rr,v.'v= o'rr,l
-2 -3
Omo= Om,i
-3 —4
Omo= Om,i
w : Radial Displacement o : outside surface
_o,,,: Radial Stress i :inside surface

Figure 2. Continuity Boundary Conditions of Radial Displacement and Stresses at the
Interfaces of Adjacent Layers.



\ 3. Relaxation of Thermal Stresses

The time-dependent thermal viscoelastic behavior of a 100-layer AS-4/3502 graphite epoxy
composite cylinder subjected to a temperature increase AT = 150° C is examined. The composite
cylinder has an inner radius a = 3.5 in, an outer radius b = 4.1 in, and a thickness of each layer
h=6.0-10in. Stacking sequence is given as [0/30/60/90],5 from inside out with the 0° direction
coinciding with the axis of the cylinder. The creep properties of AS-4/3502 graphite epoxy and
AS-4/PEEK thermoplastic laminate with a fiber volume fraction of 0.67 were investigated at different
temperatures by Kim and Hartness (1987). Figure 3 shows the transverse and shear compliance of
the composite at various temperatures. Increase of compliance with time due to créep behaviors of

material was found at elevated temperatures.

ASA/EPOXY
- 6.08 -TEMPERATURE, °C : -4-6.92
0 24
0 66
0 v 93 6.94
~-5.10} "y
T g
o
& -
£ -sl2f —+-6.961
o S <
"
S -6.14} -=-6.98
-6.16} -=7.00
Transverse Compliance
] [ [ (] 1 1
-0.5 o 0s 1.0 1.5 20
LOG t, MIN.
TEMPERATURE, °C_ AS4/EPOXY q-64
-5.6¢ 24

LOG Seg (1), PSI
i
o
®

o
2]
(]
A4
o

-59}
Shear Compliance |_.q
. L L ] 1 |
-05 ) 05 110 15 20
LOG t, MIN

Figure 3. Time-Dependent Transverse and Shear Compliances at Various Temperatures (Kim

and Hartness 1987).




In this study, the least-squares curve fitting was used to express the creep compliances from the
original AS-4/3502 data at T = 150° C in a power law form

S,® = [1.7051 (£)°19% + 1] S, (19)
and
Se(® = [11.3076 (£)°27™ + 1] s, (20)
where
S,, = 7.5328-10 "/psi

Ses = 1.3834-10/psi.

The compliance in the fiber direction, S;, = 5.9 - 10"%psi, and Poisson’s ratios, v, = v;; = 0.3,
V,3 = 0.36, are assumed to be time independent. Thermal expansion coefficients of the composites
in three principal directions are &;; = -0.5 + 10°/°C and ¢y, = 033 = 40.0 - 10°/°C, where the

negative value indicates shrinkage with temperature increase.

Figures 4 and 5 show radial displacement and radial stress profiles across the thickness of the
cylinder at three instants, t = 10~ min, t = 10** min, and t = 10> min, respectively. The radial
tractions and displacements satisfied the continuity conditions at the interfaces of layers at all instants.
The “saw” shaped radial stress distribution results from the discontinuity of material properties and
various fiber orientations. The radial displacement, w(t), reaches a steady state at t = 10> min due
to a long-term creep behavior. The radial displacement of most layers reaches a constant value,
except at the innermost and outermost portions of the cylinder. The free traction boundary at the
surface of cylindefs causes the gradients in the radial displacements. A similar phenomena is also
observed in the radial stresses showing a constant level of stress distribution in the inner portion of
cylinder away from boundary layers at t = 10" min. This long-term creep characteristic reflects the
proposed power law form, (19) and (20), of the creep compliances.

10
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Figure 4. Radial Displacement Profiles Across the Thickness of the Cylinder at Three Different
Instants: t = 10"3 min, t = 10** min, and t = 10'> min.
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Figure 5. Radial Stress Profiles Across the Thickness of the Cylinder at Three Different
Instants: t = 10~ min, t = 10** min, and t = 10> min.
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The hoop stress, Og(t) through the thickness of the cylinder, is illustrated at three instants in
Figures 6(a), 6(b), and 6(c), respectively. There exist two distinct values (discontinuity) of Gg(t)
across each interface of two adjacent layers due to the various fiber orientations through the
thickness. There is a trend showing the creep behavior of the hoop stress profiles from t = 107? min
to t = 10'2 min. The hoop stresses in 60° and 90° layers show a fairly steep gradient across the
cylinder thickness initially. However, the gradient gradually disappears as time approaches infinity.
Likewise, Figures 7(a), 7(b), and 7(c) present the axial stress 0,,(t) profiles in the radial direction at
the three specified instants, respectively. These figures exhibit similar creep and stress relaxation
behaviors as those of hoop stresses Ogo(t). However, the axial stresses in 30° and 60° layers show
an increase outwardly from the inside of the cylinder in the early stage. Figures 8(a), 8(b), and 8(c)
are the inplane shear stresses 0,4(t) through the thickness of the cylinder at the three specified
instants, respectively. The inplane shear stresses of 0° and 90° layers vanish in the entire time history
due to generalized plane strain assumption. A drastic change occurs in the 30° and 60° layers,

resulting from the combined effects of Poisson’s ratio and creep characteristics of materials.

4. Relaxation of Mechanical Stresses

In the following study, a calculation was performed to simulate a composite cylinder pressed fit
on a rigid steel mandrel as shown in a schematic in Figure 9. The 0.6-in-thick composite cylinder has
a layup construction of [90/90/90/0],s, 75% in hoop and 25% in axial direction. The contact pressure
is 1,000 psi at the interface of composite and mandrel, which results from the initial interference. The
assembly is then heated and held at 93° C constantly for creep study. In modeling of the experiment,
the inner radius of the composite overwrap was held constantly to allow creep and stress relaxation
of the cylinder occurring at 93° C. The AS-4/epoxy composite material properties were obtained
from Kim and Hartness (1987). A power equation was obtained by a least-square curve-fit technique

as follows (Tzeng 1997):

S,,(t) = 7.553 * 1077 (t)00175 (21)
and
Se(t) = 1.383 » 1076 (t)0%, (22)
12
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Composite Cylinder

Figure 9. Precompression at the Interface of a Composite Cylinder and Rigid Mandrel Can Be
Achieved By a Press-Fit Process With a Proper Interference.

The transverse and shear compliances are in a unit of 1/psi. The compliance in the fiber direction is

also assumed to be elastic, as discussed in the previous section.

Figures 10 and 11 illustrate the creep behavior of radial displacement and relaxation of radial
stresses as a function of time, respectively. As shown in the plots, a significant loss of preload was
in the composite cylinder constructed with this specific material and layup, subjected to an elevated
temperature. Tests have been performed using similar basis graphite/epoxy composite materials, and
about 20% of preload was lost in a few weeks at elevated temperatures. In general, the rate of loss
of preload increases as the temperature increases. The stress relaxation in hoop-wound fiber layers
results mainly from Poisson’s effects of creep in the transverse direction since the properties are

assumed to be elastic in the fiber direction. The stresses will not

16
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- diminish completely due to elastic properties in the fiber direction. However, the reduction and

redistribution of hoop stresses will cause a decrease of the radial compression in the cylinders ina
long period. As the radial displacement approaches a uniform state through the thickness, the radial
stress will diminish completely, depending upon the material properties and temperatures.

The viscoelastic properties are commonly not available for most composite materials. There is
a need to develop a simple and accurate estimation of the viscoelastic properties of composite
material for the analysis. This is especially important from an application point of view since there
are numerous composite systems available through a combination of matrix and fiber. The following
approach is proposed to provide a proper method of material selection based on creep and stress
relaxation consideration. The creep compliance of matrix alone can be measured using dynamic
mechanical analysis (DMA). Figure 12 shows the measured data of ICI/Fibrite 977-2 resin at a
reference temperature of 121° C. The data can then be curve-fit with a time-dependent function as

follows:
S(t)=S, x ()% (23)

The expression basically represents the time dependency of the matrix material of composite
material. Since the viscoelastic behavior of composite material is mainly dominated by the matrix,
it is reasonable to assume the transverse and shear properties of graphite/epoxy (977-2 resin)
composite following the power law as equation (23). The elastic properties that are generally
available can then be substituted into the expression as the term “S_” to obtain the viscoelastic
properties for the specific composite system. The proposed approach can signiﬁcantly reduce
engineering efforts in material testing if the approximated properties can be applied to the

viscoelastic analysis resulting in good agreement with experiment.
In the following study, a cylinder analysis was performed and compared to experimental data.

A cylinder with an inner diameter of 10.0 in and a thickness of 1.2 in was fabricated from
graphite/epoxy (Im7/977-2) composite material. The laminated cylinder has a ply construction of

18
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- an interference pressure of 20 ksi. The entire assembly is then kept in an oven at 121 ° C. The hoop

strain at the inner radius of the mandrel is monitored, which provides a measure of the preload
variation. A loss of preload was found to be 18% in about 14 days. The result of analysis is shown
in Figure 13, which indicates a fairly good agreement. Although the validation is limited to a single

experiment so far, the correlation does provide confidence of implementation of the proposed

approach.

5. Conclusions

An analysis has been developed to study the thermal viscoelastic behavior of thick-walled
laminated composite cylinders with ply-by-ply variation of anisotropic viscoelastic properties. The
relaxation of stresses and creep behaviors is properly determined in a cylinder subjected to a uniform
temperature change. The extreme anisotropy of the viscoelastic behavior of composites results in
very interesting as well as important long-term characteristics of cylinders, which cannot be modeled
using currently available finite-element codes. Creep and stress relaxation exists in the fiber direction
even though the fiber-dominant properties are elastic. This is mainly due to the contribution of the
Poisson’s effects of viscoelastic transverse and shear properties. Furthermore, the analysis is
extended to study the viscoelastic behavior of composite overwrapped cylinders with built-in
mechanical preloads. The relaxation of preload in the composite is critical to the service life cycle
of applications such as gun tubes and composite rotors, which are designed and built with a preload

to achieve desired mechanical performance.
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